517 518 519 520 521 522 523 524 525 526 527 528 529
517 576 MATHEMATICS FOR ENGINEERS AND PHYSICISTS INDEX 578 MATHEMATICS FOR ENGINEERS AND PHYSICISTS Elliptio intégrais, 47-55 complété, 48 580 MATHEMATICS FOR ENGINEERS AND PHYS1CISTS WDEX EERS AND PHYSICISTS Minima (see Maxima and minima) Minimax, 162 584 MATHEMATICS FOR ENGINE ERS AND PIIYSICISTS Région, multiply connected, 205, 212, 455 586 MATHEMATICS FOR ENGINEERS AND PHYSICISTS INDEX
INDEX C 577 Differential équations, general solution of, 230, 290, 292, 350, 358 homogeneous, 259, 261 homogcneous linear, 290 intégral curve of, 226, 228 integratmg factor of, 265 Laplace’s, 369, 382, 385, 386, 439, 451, 470, 481 Legendre’s, 342, 384 linear, 226, 283-349, 357 numerical solution of, 346 of electnc circuits, 301, 305, 386 of beat conduction, 367 of membrane, 377 of vibrating spring, 308 of vibrating string, 361 order of, 225 ordmary, 225-349 partial, 225, 350-391 partieular intégral of, 290, 292, 297, 318, 359 partieular solution of, 230 second order, 269, 295 séparation of variables in, 257 siinultaneous, 312-315 singular solution of, 279 solution ni senes, 228, 325, 349, 364   Flow, of electricity in a cable, 386 of heat, 256, 368-377, 423, 425 seepage, 483 581 K   Parallelogram law of addition, 394 Parametcrs, 277, 280 intégrais containing, 167 variation of, 318   Solution, of differential équations, singular, 279 of équations, 85-122 algebraic, 86, 95 graphical method of, 83 transcendental, 85, 97 of Systems of linear algebraic équations, 102-122 steady-state, 309, 310 Source and sink, 221, 411, 416, 424, 427, 429 587
A Coordinates, ellipsoidal, 433 parabolie, 439 first kind, F(k, <p), 48-55, 238 second kmd, E{k, <p), 48-54 third kmd, II(w, k, <p), 50 Empirical formulas, 525-560 Entropy, 224 Envelope, 279 Equation, auxiliary, 292 Bernoulli’s, 286 Bessel’s, 332, 380 characteristic, 292 oubic, 86 Euler, 322 Fourier, 425 mdicial, 334 intégral, 347 Homogeneous équations, differential, 259, 261 Modulus, of complex number, 441, 442 of intégration, 173 eimply connected, 205 Régula falsi, 101 Regular functions, 451 Remainder in Taylor’s sériés, 36-37 Remainder theorem, 92 Repeated trials, 501 Représentation, applications of conformai, 479-491 Rcsiduals, 534, 537 Résonance, 310 Riemann surface, 473 Right-handed System of axes, 397 Rod, flow of heat in, 373 vibiâtions of, 366, 367 Roots, of équations, 83-102 isolation of, 92 theorems on, 92-94 of umty, oi, a»2, 87 Rot (see Curl) Variation, of parameters, 318, 323 Vector analysis, 392-439 Vector équation of line, 395 Vector field, 406, 408, 409, 412, 418, 423
  Cable, flexible, 244 flow of eleetricity in, 386 supportmg horizontal roadway, 242   solution of, 226   Fluid motion, 220, 424, 428, 475-478, 480—484 Flux, 416   Ko(s), 337   Parametric équations, 143, 149, 150, 199, 215, 247   Space curves, 149-152 Spherical coordinates, 152, 185, 382, 386, 434, 439 Spring, 299, 308, 313 oscillation of, 299 Standard déviation, 523 Steady heat flow, 256, 368, 369, 427 Steady-state solution, 309, 310 Stereographic projection, 479 Stirling’s formula, 508 Stokes’s theorem, 421 Stream function, 221, 432, 453, 481 Stream Unes, 277, 432, 467 Stresses, shearing, 485 String, vibration of, 361 Sum, of a sériés, An. of vectors, 393  
Absolute convergence of sériés, 16, polar, 183, 184, 276, 279, 386, 438 spherical, 152, 185, 382, 386, 434, 439 Laplace’s, 195, 369, 382, 385, 386, 439, 451, 470, 481 Legcndre’s, 342, 384 of eontmuity, 221, 429, 481 of plane, 147 wave, 432 linear algebraïc, 119-122 linear differential, 290 Homogeneous function, 136, 259 définition of, 136 Euler’s theorem on, 136 Hooke’s law, 241, 299 Horner’s method, 95 Hydrodynamics, 221, 422, 428-433, 480-484 Hyperbola, 247 Hyperbolic functions, 247-256 Hyperbolic paraboloid, 162 of elliptic function, k, 51 Moment, bending, 241 Moment of inertia, 177, 180, 182, 183, 187, 190, 191, 196, 241 Moments, method of, 544 Most probable value, 505 approximation for probability of, 511 Rotational field, 418 Rule, Cramer’s, 113 Simpson’s, 556 trapézoïdal, .556 Vector point function, 406 Vector product, 400 applications of, 404 Vector relationships, 402 Vectors, 144, 152, 392 addition of, 393 base, 396 curl of, 418 décomposition of, 396 divergence of, 411 magnitude of, 393 multiplication of, 399 ongin of, 393 orthogonal, 398 radius, 195 unit, 394, 397 zéro, 393
  Cartography, 479 Catenary, 247, 252. Cauchy-Riemann équations, 221, 450, 455   witli constant coefficients, 287-315, 357   Flux density, magnetic, 52 Force, 217, 239, 392, 406, 409 components of, 217 conservative field of, 219 electrostatic, 487 Force function, 411 Forced vibrations, 308, 310 Formula, asymptotic, 509 Cauchy’s intégral, 461 empirical, 525-560 interpolation, 550 Lagrange’s, 552 Poisson, 512 Stirling’s, 508 Wallis’s, 45 Founer coefficients, 65 Fourier équation, 425 Fourier sériés, 63-82 complex form of, 78 différentiation of, 80 expansion in, 65-82 intégration of, 80 solution of équations with, 364 Functional dependence, 2 Functional déterminant, 183 Functions, 1 analytic, 451 Bessel, 336 Beta, 276   L   Partial dérivatives, 125-143, 153 Partial differential équation, 350-391   Superposition of effects, 129, 223 Surface, équation of, 144 level, 406  
17, 20, 21 cos x, 46, 250 cosh, 247 Equations, Cauchy-Biemann, 221, 450, 455 I Motion, dead-beat, 304 fluid, 220 l*ws of, 231, 234 of a membrane, 377 oscijlatory, 304 pendulum, 48, 234 simple harmonie, 233, 301, 314, 380 S Velocity, 404, 424
  Cauchy’s équation, 322«.   with variable coefficients, 284, 315-349   complementary, 290 conjugate, 468, 470 continuous, 23, 448 elementary, 315 expansion of, 35, 65, 155 Gamma, 272-277 holomorphic, 451 homogeneous, 136, 259 hyperbolic, 247-256 of a complex variable, 444-491 of several variables, 123, 160 orthogonal, 81, 339, 345 periodic, 64   Lagrange’s interpolation formula, 552   dérivation of, 351   normal to, 147, 407 Surface intégral, 188-196, 415, 421 Surfaces, coordinate, 434 Riemann, 473  
Absolute value of coniplex number, Cosine, hyperbolic, 247 powcr sériés for, 38, 40 Cosine séries, 73 consistent, 117-122 dépendent, 105 difïerential, 225-391 Euler’s, 430 Functions, potential, 219, 411 power, 30 real, 2, 123 regular, 451 scalar point, 406 singularities of, 222 stream, 221, 432, 453, 'toi vector point, 406 under gravity, 232 Multiple intégrais, 172-196 définition and évaluation of, 173, 179 Scalar field, 406, 408 Scalar point funetion, 406, 418 Scalar product, 399 application of, 404 Scalars, 392 angular, 61, 191, 236, 404, 424 cntical, 61
  Cauchy’s intégral formula, 461 Cauchy’s intégral test, 12 Cauchy’s intégral theorem, 455 Center of gravity, 177, 182, 183, 187, 190, 191, 196, 522   Differential expression, 225 Differential operators, 287-299, 357, 406     Lagrange’s method of multipliera, 163-167   Fourier, 425   Systems of équations, consistent or inconsistent, 117-122 linear algebraic, 107-122  
441 Cosines, direction, 146, 147, 151, 188, 194, 398 coth, 249 Cramer’s rule, 113 Cross product, 400 Cubic équation, algebraic solution of,*86 mconsistent, 105, 117-122 normal, 537, 540 Fundamcntal principlc, of combina-tory analysis, 493 of sequences, 6 Imaginary roots, 94 Implicit functions, 132, 137-142 Inclined plane, 280, 282, 306 Incompressible fluid, 424, 430 Inconsistent équations, 105, 117-122 Independence, linear, 116, 317 of path, 208, 216, 452, 455 Independent events, 495 Independent trials, 501 Indicial équation, 334 Infinité sériés, 1-62 géométrie interprétation of, 177 Multiplication, of complex numbers, 442 Schwartz transformation, 478, 485, 491 of earth’s rotation, 61 of escape, 61 terminal, 59, 254
  Change of variables, in dérivatives, 154   Différentiation, of implicit fonctions, 132-142     Lamellar field, 423 Laplace’s approximation, 515 Laplace’s équation, 195, 369, 382, 385, 386, 439, 451, 470, 481 Law, Bernoulli-Euler, 241 binomial, 502, 512 of attraction, 218 of conservation of matter, 429 of cooling, 254 of dynamics, 231 of error, 520, 536 of gravitation, 232 of small numbers, 512 Least squares, method of, 536 theory of, 521   intégration of, 353   T Velocity potential, 221, 222, 277, 430, 432, 453, 467, 480 Vibration, forced, 308, 310 of elastic rod, 366, 367 of membrane, 377 of spring, 308 of string, 361
Addition, of séries, 21 of vectors, 393 parallelogram law of, 394 Adiabîftic process, 224 Aerodynamics, 133, 431 Algebra, fondamental theorcm of, 92 Algebraic theorems, 92-94 Alternatmg séries, 15 am «, 51 graphical solution of, 83 Curl, 418, 422, 423, 438 Current, 386, 427 Curve, distribution, 504, 516 elastic, 240, 307 map of, 466 Curve fitting, 525-560 Curves, intégral, 226, 228, 279 orthogonal, 277, 468 Curviiinear coordinates, 433-439 Cylinder functions (see Bessel func-tions) parametric, 143, 149, 150, 199, 215 representmg spécial types of data, 528 Fundamental theorem, of algebra, 92 of intégral calculus, 172, 457 absolute convergence of, 16, 17, 20 conditional convergence of, 16, 17 définition of, 4 expansion m, 35-46, 155-158 of constants, 6-22 of functions, 23-62 of power functions, 30 of trigonométrie functions, 63-82 operations on, 21, 29, 33-35 sum of, 4n. of déterminants, 110 of sériés, 21 of vectors, 399 Multiplicity of root, 93, 294 Multiplier, Lagrangian, 165 Multiply connected région, 205, 212, 455 Seepage flow, 483 Séparation of variables, 257 Sequences, 2  
  in intégrais, 183-188 Charactcristic équation, 292 Charge, distribution of, 487 Charts, distribution, 506 Chemical reaction, 258 Circular functions, 247 Circulation, of a liquid, 475, 477 of a vector, 418, 419 Closed curve, area of, 199-201 direction around, 200 intégral around, 201, 203, 206, 216, 421 simple, 200 en u, 51   of senes, 29, 33, 34, 80 partial, 123-171 term by term, 33, 34, 80 under intégral sign, 167 Diffusion, 369, 427 Diffusivity, 368n.     Legendre polynomials, 344, 384 expansion in, 346 Legendre’s équation, 342, 384 Leibnitz’s rule (see Différentiation, under intégral sign)   Laplace’s, 369, 382, 385, 386, 439   Tangent line, 143, 147, 151 Tangent plane, 146-149 tanh, 249 (See also Simple harmonie motion)
Arapere’s formula, 52ra. Cylmdrical coordinates, 152, 185, 190, 191, 378, 386, 434, 438 simultaneous, 102-122, 139-141 solution of, 83-122 Systems of, 102-122 G tests for convergence of, 9, 11, 12, 15, 20, 27, 31, 33 Mutually exclusive events, 497 N fundam entai principle of, 6 limit of, 3  
  Coefficients, Fourier, 65 metric, 437 Cofactor, 111, 112 Combinatory analysis, fundamental principle of, 493   Direction angles, 146, 398 Direction components, 146 Direction cosines, 146, 147, 151, 188, 194, 398     Leibnitz’s test (see Test, for altemat-mg sériés)   linear, 357   Taylor’s formula, 35-46, 158 applications of, 41-46 Taylor’B sériés, 37, 464, 539 for functions of two variables, 155-158, 228 Viscous damping, 302, 366 Volume, as a triple intégral, 180 clement of, 185, 187, 190, 437 Volume intégral, 180, 415
Amplitude of coniplex number, 441 Amplitude function, 51 Analysis, harmonie, 545 Analytic functions, 451-491 Angle, as a line intégral, 195 direction, 146, 398 of lap, 240 of twist, 485 solid, 195 D Direction ratios, 150, 151 Directional denvative, 143, 151, 219 (See also Gradient) honïogeneous lmear, 119-122 non-homogeneous linear, 113-119 Gamma functions, 272-277 Gauss-Argand diagram, 440 Gaussian law of error, 520, 536 Gauss’s theorem, 193 General solution of differential équation, 230, 290, 292, 350, 358 Geomctnc sériés, 9 Gradient, V, 144, 152, 407, 410, 438 Graphical method, of curve fitting, 525 theorems on, 17, 21, 27, 28, 29, 31, 33, 34, 36, 38 N*bla, or del, V, 194, 195, 407, 414, 422 Sériés, asymptotic, 524 binomial, 40 Taylor’s theorem, 36 Tension, 239, 243, 244, 251, 362, 377 Test, Cauchy’s intégral, 12 comparison, 9 for alternating sériés, 15 for sériés, 9, 11, 12, 15, 20, 27, 31, 33  
  Commutative law, 394, 399, 400 Comparison test for senes, 9 Complementary function, 290, 292 Complété elliptic intégrais, 48 Compiex number, 440 absolute value of, 441 argument of, 441 conjugate of, 444, 488 vector représentation of, 440 Compiex roots of unity, 87       Length, of arc, 143 of ellipse, 47 of sine curve, 55 Level surface, 406 Limit, 2, 124, 454 Line, contour, 144 coordinate, 434   of elastic membrane, 377 of electric circuits, 386 of heat conduction, 367, 425 of vibratmg string, 361 Partial difîerentials, 128-143 Partial différentiation, 123-171 Partial fractions, method of, 297 Partial sum, 4   W
Angular veloeity, 61, 191, 236, 404, Compiex variable, 440-491 functions of, 444-491 analytic, 451-491 dérivative of, 449 intégration of, 453 line intégral of, 454 Taylor’s expansion for, 464 Components of force, 217 Composite function, 134, 137 Condenser, 283, 299, 305, 308, 387 Conditionally convergent sériés, 16, 17, 21 Dam, gravity, 483 Dampmg, viscous, 30ü Dead-beat motion, 304 Décomposition of vectors, 396 Definite intégrais, 172 Dirichlet conditions, 65 Disoharge of condenser, 299 Discontinuity, fimte, 64 Discriminant of cubic, 89 Distance, élément of, 435 Distribution of charge, 487 Distribution charts, 506 Distribution turve, 504, 516 Distributive law, 399, 400 Divergence, of senes, 5, 8, 20 / of a vector, 411, 423, 438 Divergence theorem, 191, 415, 425, 428 dn u, 51 Error, Gaussian law of, 520, 536 mean, 516 mean absolute, 522 mean square, 522 of observation, 516 probable, 521 small, 56 of solution of équations, 83 Gravitational constant, 232 Gravitational law (see Attraction) Gravitational potential, 219, 408 Gravity, center of, 177, 182, 183, 187, 190, 191, 196, 522 Gravity dam, 483 umform convergence of, 23-30, 33 Inflection, point of, 159 Initial conditions, 235, 351 Intégral calculus, fundamental theorem of, 172, 457 Intégral curve, 226, 228, 279 Newtonian potential, 196 Newton’s law, of attraction, 218 of cooling, 254 of dynamics, first law, 231 second law, 231, 272, 363 third law, 231, 234 of gravitation, 232 Newton’s method of solution, 97 évaluation of intégrais by, 43—46 Fourier, 63-82 infinité, 1-62 ratio, 11, 20, 31 Weierstrass M, 27 Theory of lcast squares, 521 Thermodynamies, 222 Torque, 405  
      Intégral équation, 347 Intégral formula, Cauchy’s, 461 Intégral test for sériés, 12 Intégral theorem, Cauchy’s, 455 Intégrais, around closed curve, 201, 203, 206, 216, 421 change of variable in, 183-188 defimte, 172 direction cosines of, 146, 147, 151 normal, 144, 146-149 of equal potential, 277 of flow, 475 stream, 277, 432, 467 tangent, 143, 147, 151 vector équation of, 395 Line intégrais, 197-224, 410, 421, 454 Normal, to a curve, 144 to a plane, 146, 147 to a surface, 147, 188, 407 Normal approximation, 515 Normal denvative, 144, 146, 152 (See also Gradient) Particular intégral, 290, 292, 297, 318, 359   Walhs’s formula, 45 Wave équation, 432 Wcdge, 473 Weierstrass test, 27 Work, 217, 404 Wronskian, 317
424 Conditions, Cauchy-Riemann, 221, 450, 455 Dirichlet, 65 change of variable in, 183-188 évaluation of, 172 mean-value theorem for, 210n. Deflection, 299 Dot product, 399 Error function, 516 Green’s theorem, for the plane, 202 in space, 191, 418 symmetric form of, 194, 418   Line intégrais, applications of, 217-224   intégration and différentiation of, 29, 33, 34 Total dérivatives, 130-143 Total differential, 127-143 Trajectories, orthogonal, 277-279 Transformation, by analytic fonctions, 467  
    Euler équation, 322 Euler formulas, 78, 251 Euler’s équations, 430 Euler’s theorem, 136 Evaluation of intégrais, by différentiation, 169 m sériés, 43-46 Even function, 68 Events, dépendent, 495 indépendant, 495 mutually exclusive, 497 Exact difïerential, 211, 212, 216, 222, 224,262,411,418,420 Exact difïerential équation, 262 Expansion, m Bessel functions, 339 m Fourier sériés, 65-82 m Legendre polynomials, 346 in Maclaurm’s sériés, 37 in power sériés, 37-46 in Taylor’s sériés, 37 m trigonométrie sériés, 65 uniqueness of, 38 Expectation, 500 double, 173, 192, 202, 275 elliptic, 47-55, 238 évaluation of, by means of sériés, 43-46 Normal distribution curve, 516 Normal équations, 537, 540 Normal form, 146 Particular solution, 230 Path, intégrais independent of, 208, 216, 452, 455 Sériés, of constants, 6-22 of functions, 23-62 power, 30-62 Z
Applications, of conformai représentation, 479-491 of lme intégrais, 217-224 of scalar and vector produets, 404-406 for exact differential, 212, 216 Conductivity, 367, 426 Conductor, 486, 489 Conformai mappmg, 465, 471 Conformai représentation, applications of, 479-491 Conformai transformation, 467 Conjugate of a compiex number, 444, 488 Degree of differential équation, 225 Del, V (see Nabla) Double intégrais, 173, 192, 202, 275 Drying of porous solids, 369 Dynamics, laws of, 231   H   around a closed curve, 202, 206, 216, 421     conformai, 467 Green’s, 191, 202, 418 of element of arc, 467 of intégrais, 202 Schwartz, 478, 485, 491 Stokes’s, 421 Trapézoïdal rule, 556 Trials, rcpeated and independent, 501  
    Expected number of successes, 508 Exponential form for trigonométrie functions, 78, 251, 446, 447 Exponential function, expansion for, 42, 446 iterated, 175, 180 line, 197-224, 410, 421, 454, 458 mean-value theorem for, 210n. multiple, 172-196 particular, 290, 292, 297, 318 surface, 188-196, 415, 421 transformation of (see Green’s theorem; Stokes’s theorem) triple, 177, 193 volume, 180, 415 witli a parameter, 47, 167 Integrating factor, 265 Intégration, by parts, 276 numerieal, 554—560 of complex functions, 453 of sériés, 29, 33, 34, 80 term by term, 33, 34, 80 Interpolation, method of, 101 Interpolation formulas, 550-554 Interval, 4 Normal law (see Gaussian law of error) Pendulum, simple, 44, 234-238, 306 Periodic function, 64 Picard’s method, 347 Plane, équation of, 147 mclined, 280, 282, 306 normal form for, 146 tangent, 146-149 Point, of inflection, 159 smgular, 451 Poisson formula, 512 Polar coordinates, 183,184, 276, 279, 386, 438 solution of differential équations by, 228, 325-346 Zéro vector, 393
Approxnnate formula, for n\, 509 for probability of most probable number, 511 Conjugate functions, 468, 470 Conservation of matter, law of, 429 Conservative ficld of force, 219, 411 Consistent Systems of équations, 117-122 Delta amplitude, dn, 51 De Moivre’s theorem, 90, 442 E   Harmonie analysis, 545 Harmonie sériés, 8 Heat conduction, 367 Heat flow, 368-377 équation of, 368, 425 steady, 256, 368, 427 variable, 368, 373, 425 Hélix, 151, 152 Holomorphic functions, 451   définition of, 197, 454 évaluation of, 202-206, 458 for angle, 195 for area, 201 for work, 217 in space, 215, 410, 421 properties of, 206-217 transformation of, 202, 421 Linear dependence or independence, 116, 317     Trigonométrie functions, 78, 251, 446, 447  
  Dependence, functional, 2 linear, 116 Extremal values, 164 Extremum, 164 of convergence, 31, 33 of expansion, 38, 76 Inverse hyperbolic functions, 249, 255 Normal line, 144, 146-149 Normal orthogonal functions, 81 Numbers, complex, 440 measure, 397 Polygon, rectilinear, 478, 485 Polynomials, Legendre, 344, 384 Porous solids, drying of, 369 Potential, elcctrostatic, 487 gravitational, 219, 408 lines of equal, 277 Newtonian, 196 Taylor’s and Maclaurin’s, 37, 155, 228, 249, 464, 539 tests for convergence of, 9, 11, 12, 15, 20, 27, 31, 33 Zonal harmonies (see Legendre poly-nomials)
in applied mathematics, 55 Approximation, Laplace’s or normal, Continuity, équations of, 221, 429, 481   e, 42 e**, 250     Linear differential équations, 288-349, 357     Trigonométrie sériés, 63-82 Triple intégrais, 177, 193  
  Dépendent events, 495 Dérivation of differential équations, 231-247 Dérivative, 125 directional, 143, 151, 219 normal, 144, 146, 152 of functions of a complex variable, 449, 452, 463 F Inversions, 106 Numerical intégration, 554-560 Numerical solution of différentiel équations, 346 velocity, 221, 222, 277, 430, 432, 453, 467, 480 theorems on, 17, 21, 27, 28, 29, 31, 33, 34, 36, 38  
515 of functions, 23, 28, 124, 448 Contour lino, 144   Effects, superposition of, 129, 223 E{k, <p), 48-51, 54 Elastic curve, 240, 307 Elasticity, 241, 422, 484-486 Electrodynamies, 422, 423n. Electron, 315     with constant coefficients, 287 357 with variable coefficients, 284, 315-349   Potential function, 219, 411 Power sériés, 30-62 différentiation of, 33, 34 évaluation of intégrais by, 43-46 expansion in, 35-46 fonctions defined by, 33 intégration of, 33, 34 interval of convergence of, 31, 33 operations on, 33-35 theorems on, 31-35 umform convergence of, 33 uniqueness of expansion in, 38 whose ternis are infinité sériés, 40 Power séries solutions of differential équations, 325-346 Précision constant, 520, 521 Pressure on dam, 484 Primitive, 458   U  
  of hyperbolic functions, 255 of senes, 29, 33 partial, 125-143, 153 total, 130-143 Descartes’s rule of signs, 94 Déterminants, 102-114 cofactors of, 111 expansion of, 106n., 111 functional or Jacobian, 183 Laplace development of, 111 minors of, 110 of matrix, 115 product of, 110 properties of, 107-112 solution of équations by, 102-114 Wronskian, 317 Déviation, standard, 523 Diagonal term of déterminant, 107 Diagram, pv, 223 Différences, 527 F(k, </>), 48-55 Factor, integrating, 265 Factor theorem, 92 Facto rial, n !, approximation for, 509 (See also Gamma functions) Falling body, 58, 232 Field, 406 Irrotational field, 418, 423, 430 Isolation of roots, 92 Isothermal process, 224 Iterated intégrais, 175, 180 Itération, method of, 297 O uniform convergence of, 23-30 Shearing stresses, 485 Simple closed curve, 200 Simple harmonie motion, 233, 301, 314, 380 équation of, 234 penod of, 234  
Approximations to binomial law, 512 Arc length, 143 of ellipse, 47 Convergence, absolute, 16, 17, 20, 21, 33   Electrostatie field, 475, 477, 479 Electrostatic force, 487 Electrostatie potential, 487 Electrostatics, 486-491 Elément, of arc, 467 of area, 184, 190, 437 of distance, 435 of volume, 185, 187, 190, 437 Elcmentary functions, 315 expansion of, 35-46, 65-82, 465 Ellipse, area of, 177, 202 center of gravity of, 177 length of arc of, 47 Ellipsoidal coordinates, 433 Elliptic functions, 51     Lmear differential operator, 287-299 Log z, 446   Principal part of incrément, 128 Probability, 492-524 Probability curvo, 521 Probable error, 521 Probable value, most, 505 probability of, 511 Product, of déterminants, 110 scalar, 399 vector, 400   Undetermined coefficients, 229 Uniform convergence, 23-30 test for, 27  
Arc length, of sinusoid, 55 Area, 172 Differential, exact, 211, 212, 216, 222, 224, 262, 411, 418, 420 of area, 184, 190 of volume, 185, 187, 190 partial, 128-143 total, 127-143 conservative, 411 electrostatic, 475, 477, 479 irrotational, 418 Finite discontinuity, 64 Fittmg, curve, 525-560 Flexure, 298 J Odd function, 68 Operator, 528 Simple pendulum, 44, 234-238, 306 Simply connected région, 205 Simpson’s rule, 556 Simultaneous differential équations, 312-315  
  conditional, 16, 17, 21 interval of, 31, 33 of sériés, 4, 7       Logarithmic paper, 526 M   Projection, Mercator’s, 479 stereographic, 479 Pulloy, slipping of belt on, 239 pv diagram, 223   Unit vectors, 394, 397 Unity, roots of, 87  
as a double intégral, 178 as a lme intégral, 199-202 element of, 183, 184, 190, 437 positive and négative, 200 surface, 188-196 Differential équations, 225-391 Bernoulli’s, 286 Bessel’s, 332, 380 Cauchy-Riemann, 221, 450, 455 Cauchy’s, 322n. définition of, 225 degree of, 225 dérivation of, 231-247 Euler’s, 322, 430 exact, 262 first order, 256, 267 Fourier, 425 Flow, of a liquid, 220, 424, 428, 477, Jn(x), 336 différentiel, 287-299, 357, 406 vector (see Curl; Divergence; Gradient; Nabla) Simultaneous équations, 102-122, 139-141 sin x, 41, 250 siir ' x, 46  
  tests for, 9, 11, 12, 15, 20, 27, 31, 33       M test, 27   Q   V  
Argument of complex number, 441 Associative law, for sériés, 18 for vectors, 394   , 478,480-484 Jacobian, 141, 183, 190 Order of differential équation, 225 Ordinary differential équations, 225— • ' 349 Sine, hyperbolic, 247 length of curve, 55 power sériés for, 40, 41 Sme senes, 73 Singular point, 451 Smgular solution, 279 Singulanties of funetion, 222 sinh x, 247  
  radius of, 31, 33 umform, 23-30, 33 Cooling, law of, 254 Coordinate lines, 434 Coordinate surfaces, 434 Coordinates, curvilinear, 433-439 cylindrical, 152,185,190, 191, 378, 386, 434, 438       Maclaurin formula, 36 Maclaurin’s sériés, 37, 249 Magnitude of a vector, 393 Map, géographie, 479 of a curve, 466 Mapping functions, 467 Matrix, 114-122 augmented, 118 déterminants of, 115 rank of, 115   Quadrature, meehanical, 554 Quotient, of complex numbers, 444 of power sériés, 40   Variable, change of, 154, 183-188 complex, 440-491 dépendent, 2 independent, 1  
Asymptotic formula for ■«', 509 Asymptotic séries, 524 Atmosphère, thickness of, 61 Attraction, law of, 218, 232 motion under, 58, 218 of cône, 196 of eyhnder, 196 of sphere, 196, 232 Augmented matrix, 118 Auxiliary équation, 292 Averages, method of, 534 Axes, right- or left-handed, 397       (See also Differential équations) Ordinary discontinuity, 64 Origin of a vector, 393 Orthogonal curves, 277, 468 Orthogonal functions, 81, 339, 345 Orthogonal Systems, 434 ^Orthogonal trajectories, 277-279 Orthogonal vectors, 398 Oscillation of a spring, 299 Oscillatory motion, 304 Overdamped, 303 Sink (see Source and sink) Six-ordmate scheme, 548 Slipping of belt on pulley, 239 Small numbers, law of, 512 sn u, 51  
        Maxima and minima, constramed, 163   R   Variable heat flow, 368, 373, 425 Variation, of constants (see Variation, of parameters)  
B       P Solenoidal field, 423 Solid angle, 195 Solids, drying of porous, 369 Solution, of cubic, 86-91  
        for functions of one variable, 158 for functions of several variables, 160   Radius of convergence, 31, 33 Radius vector, 195 Rank of matrix, 115 Ratio test, 11, 20, 31 Reaction, Chemical, 258 Rearrangement of sériés, 17 Rectilinear polygon, 478, 485 Recursion formula, 273, 328, 3    
Base vectors, 396 Beam, 240-242, 307 Belt on pulley, slippmg of, 239 Bendmg moment, 241 Bernoulli-Euler law, 241, 307 Bernoulli’s équation, 286 Bessel functions, 273, 336, 381 expansion in, 339 Bessel’s équation, 332, 380 Beta function, 276 Binomial law, 502       p sériés, 10 Parabole, 244 Parabolic coordinates, 439 Paraboloid, hyperbolic, 162 Parachute, 253, 255 of differential équations, 226, 228, 325  
        Mean error, 516, 522 Mean-value theorems, 210n.      
approximations to, 512 Binomial sériés, 40 Biot and Savart, law of, 52 Boundary conditions, 242, 351, 363, 370         general, 230, 290, 292, 350, 358 particular, 230  
        Measure numbers, 397 Mechanical quadrature, 554 Membrane, vibration of, 377 Mercator’s projection, 479 Metric coefficients, 437      
Buckling, 299