517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
517 |
576 MATHEMATICS FOR ENGINEERS
AND PHYSICISTS |
INDEX |
578 MATHEMATICS FOR ENGINEERS
AND PHYSICISTS |
Elliptio intégrais, 47-55
complété, 48 |
580 MATHEMATICS FOR ENGINEERS
AND PHYS1CISTS |
WDEX |
EERS AND PHYSICISTS |
Minima (see Maxima and minima)
Minimax, 162 |
584 MATHEMATICS FOR ENGINE ERS
AND PIIYSICISTS |
Région, multiply connected, 205,
212, 455 |
586 MATHEMATICS FOR ENGINEERS
AND PHYSICISTS |
INDEX |
INDEX |
C |
577 |
Differential équations, general
solution of, 230, 290, 292, 350, 358 homogeneous, 259, 261 homogcneous
linear, 290 intégral curve of, 226, 228 integratmg factor of, 265 Laplace’s,
369, 382, 385, 386, 439, 451, 470, 481 Legendre’s, 342, 384 linear, 226, 283-349,
357 numerical solution of, 346 of electnc circuits, 301, 305, 386 of beat
conduction, 367 of membrane, 377 of vibrating spring, 308 of vibrating
string, 361 order of, 225 ordmary, 225-349 partial, 225, 350-391 partieular
intégral of, 290, 292, 297, 318, 359 partieular solution of, 230 second
order, 269, 295 séparation of variables in, 257 siinultaneous, 312-315
singular solution of, 279 solution ni senes, 228, 325, 349, 364 |
|
Flow, of electricity in a cable,
386 of heat, 256, 368-377, 423, 425 seepage, 483 |
581 |
K |
|
Parallelogram law of addition,
394 Parametcrs, 277, 280 intégrais containing, 167 variation of, 318 |
|
Solution, of differential
équations, singular, 279 of équations, 85-122 algebraic, 86, 95 graphical
method of, 83 transcendental, 85, 97 of Systems of linear algebraic
équations, 102-122 steady-state, 309, 310 Source and sink, 221, 411, 416,
424, 427, 429 |
587 |
A |
|
Coordinates, ellipsoidal, 433
parabolie, 439 |
|
first kind, F(k, <p), 48-55,
238 second kmd, E{k, <p), 48-54 third kmd, II(w, k, <p), 50 Empirical
formulas, 525-560 Entropy, 224 Envelope, 279 Equation, auxiliary, 292
Bernoulli’s, 286 Bessel’s, 332, 380 characteristic, 292 oubic, 86 Euler, 322
Fourier, 425 mdicial, 334 intégral, 347 |
|
Homogeneous équations,
differential, 259, 261 |
|
Modulus, of complex number, 441,
442 |
|
of intégration, 173 eimply
connected, 205 Régula falsi, 101 Regular functions, 451 Remainder in Taylor’s
sériés, 36-37 Remainder theorem, 92 Repeated trials, 501 Représentation,
applications of conformai, 479-491 Rcsiduals, 534, 537 Résonance, 310 Riemann
surface, 473 Right-handed System of axes, 397 Rod, flow of heat in, 373
vibiâtions of, 366, 367 Roots, of équations, 83-102 isolation of, 92 theorems
on, 92-94 of umty, oi, a»2, 87 Rot (see Curl) |
|
Variation, of parameters, 318,
323 Vector analysis, 392-439 Vector équation of line, 395 Vector field, 406,
408, 409, 412, 418, 423 |
|
Cable, flexible, 244 flow of
eleetricity in, 386 supportmg horizontal roadway, 242 |
|
solution of, 226 |
|
Fluid motion, 220, 424, 428,
475-478, 480—484 Flux, 416 |
|
Ko(s), 337 |
|
Parametric équations, 143, 149,
150, 199, 215, 247 |
|
Space curves, 149-152 Spherical
coordinates, 152, 185, 382, 386, 434, 439 Spring, 299, 308, 313 oscillation
of, 299 Standard déviation, 523 Steady heat flow, 256, 368, 369, 427
Steady-state solution, 309, 310 Stereographic projection, 479 Stirling’s formula,
508 Stokes’s theorem, 421 Stream function, 221, 432, 453, 481 Stream Unes,
277, 432, 467 Stresses, shearing, 485 String, vibration of, 361 Sum, of a
sériés, An. of vectors, 393 |
|
Absolute
convergence of sériés, 16, |
|
polar, 183, 184, 276, 279, 386,
438 spherical, 152, 185, 382, 386, 434, 439 |
|
Laplace’s, 195, 369, 382, 385,
386, 439, 451, 470, 481 Legcndre’s, 342, 384 of eontmuity, 221, 429, 481 of
plane, 147 wave, 432 |
|
linear algebraïc, 119-122 linear
differential, 290 Homogeneous function, 136, 259 définition of, 136 Euler’s
theorem on, 136 Hooke’s law, 241, 299 Horner’s method, 95 Hydrodynamics, 221,
422, 428-433, 480-484 Hyperbola, 247 Hyperbolic functions, 247-256 Hyperbolic
paraboloid, 162 |
|
of elliptic function, k, 51
Moment, bending, 241 Moment of inertia, 177, 180, 182, 183, 187, 190, 191,
196, 241 Moments, method of, 544 Most probable value, 505 approximation for
probability of, 511 |
|
Rotational field, 418 Rule,
Cramer’s, 113 Simpson’s, 556 trapézoïdal, .556 |
|
Vector point function, 406
Vector product, 400 applications of, 404 Vector relationships, 402 Vectors,
144, 152, 392 addition of, 393 base, 396 curl of, 418 décomposition of, 396
divergence of, 411 magnitude of, 393 multiplication of, 399 ongin of, 393 orthogonal,
398 radius, 195 unit, 394, 397 zéro, 393 |
|
Cartography, 479 Catenary, 247,
252. Cauchy-Riemann équations, 221, 450, 455 |
|
witli constant coefficients,
287-315, 357 |
|
Flux density, magnetic, 52
Force, 217, 239, 392, 406, 409 components of, 217 conservative field of, 219
electrostatic, 487 Force function, 411 Forced vibrations, 308, 310 Formula,
asymptotic, 509 Cauchy’s intégral, 461 empirical, 525-560 interpolation, 550
Lagrange’s, 552 Poisson, 512 Stirling’s, 508 Wallis’s, 45 Founer
coefficients, 65 Fourier équation, 425 Fourier sériés, 63-82 complex form of,
78 différentiation of, 80 expansion in, 65-82 intégration of, 80 solution of
équations with, 364 Functional dependence, 2 Functional déterminant, 183
Functions, 1 analytic, 451 Bessel, 336 Beta, 276 |
|
L |
|
Partial dérivatives, 125-143,
153 Partial differential équation, 350-391 |
|
Superposition of effects, 129,
223 Surface, équation of, 144 level, 406 |
|
17, 20,
21 |
|
cos x, 46, 250 cosh, 247 |
|
Equations, Cauchy-Biemann, 221,
450, 455 |
|
I |
|
Motion, dead-beat, 304 fluid,
220 l*ws of, 231, 234 of a membrane, 377 oscijlatory, 304 pendulum, 48, 234
simple harmonie, 233, 301, 314, 380 |
|
S |
|
Velocity, 404, 424 |
|
Cauchy’s équation, 322«. |
|
with variable coefficients, 284,
315-349 |
|
complementary, 290 conjugate,
468, 470 continuous, 23, 448 elementary, 315 expansion of, 35, 65, 155 Gamma,
272-277 holomorphic, 451 homogeneous, 136, 259 hyperbolic, 247-256 of a
complex variable, 444-491 of several variables, 123, 160 orthogonal, 81, 339,
345 periodic, 64 |
|
Lagrange’s interpolation
formula, 552 |
|
dérivation of, 351 |
|
normal to, 147, 407 Surface
intégral, 188-196, 415, 421 Surfaces, coordinate, 434 Riemann, 473 |
|
Absolute
value of coniplex number, |
|
Cosine, hyperbolic, 247 powcr
sériés for, 38, 40 Cosine séries, 73 |
|
consistent, 117-122 dépendent,
105 difïerential, 225-391 Euler’s, 430 |
Functions, potential, 219, 411
power, 30 real, 2, 123 regular, 451 scalar point, 406 singularities of, 222
stream, 221, 432, 453, 'toi vector point, 406 |
• |
|
under gravity, 232 Multiple
intégrais, 172-196 définition and évaluation of, 173, 179 |
|
Scalar field, 406, 408 Scalar
point funetion, 406, 418 Scalar product, 399 application of, 404 Scalars, 392 |
|
angular, 61, 191, 236, 404, 424
cntical, 61 |
|
Cauchy’s intégral formula, 461
Cauchy’s intégral test, 12 Cauchy’s intégral theorem, 455 Center of gravity,
177, 182, 183, 187, 190, 191, 196, 522 |
|
Differential expression, 225
Differential operators, 287-299, 357, 406 |
|
|
|
Lagrange’s method of
multipliera, 163-167 |
|
Fourier, 425 |
|
Systems of équations, consistent
or inconsistent, 117-122 linear algebraic, 107-122 |
|
441 |
|
Cosines, direction, 146, 147,
151, 188, 194, 398 coth, 249 Cramer’s rule, 113 Cross product, 400 Cubic
équation, algebraic solution of,*86 |
|
mconsistent, 105, 117-122
normal, 537, 540 |
Fundamcntal principlc, of
combina-tory analysis, 493 of sequences, 6 |
Imaginary roots, 94 Implicit
functions, 132, 137-142 Inclined plane, 280, 282, 306 Incompressible fluid,
424, 430 Inconsistent équations, 105, 117-122 Independence, linear, 116, 317
of path, 208, 216, 452, 455 Independent events, 495 Independent trials, 501
Indicial équation, 334 Infinité sériés, 1-62 |
|
géométrie interprétation of, 177
Multiplication, of complex numbers, 442 |
|
Schwartz transformation, 478,
485, 491 |
|
of earth’s rotation, 61 of
escape, 61 terminal, 59, 254 |
|
Change of variables, in
dérivatives, 154 |
|
Différentiation, of implicit
fonctions, 132-142 |
|
|
|
Lamellar field, 423 Laplace’s
approximation, 515 Laplace’s équation, 195, 369, 382, 385, 386, 439, 451,
470, 481 Law, Bernoulli-Euler, 241 binomial, 502, 512 of attraction, 218 of
conservation of matter, 429 of cooling, 254 of dynamics, 231 of error, 520,
536 of gravitation, 232 of small numbers, 512 Least squares, method of, 536
theory of, 521 |
|
intégration of, 353 |
|
T |
Velocity potential, 221, 222,
277, 430, 432, 453, 467, 480 Vibration, forced, 308, 310 of elastic rod, 366,
367 of membrane, 377 of spring, 308 of string, 361 |
Addition,
of séries, 21 of vectors, 393 parallelogram law of, 394 Adiabîftic process,
224 Aerodynamics, 133, 431 Algebra, fondamental theorcm of, 92 Algebraic
theorems, 92-94 Alternatmg séries, 15 am «, 51 |
|
graphical solution of, 83 Curl,
418, 422, 423, 438 Current, 386, 427 Curve, distribution, 504, 516 elastic,
240, 307 map of, 466 Curve fitting, 525-560 Curves, intégral, 226, 228, 279
orthogonal, 277, 468 Curviiinear coordinates, 433-439 Cylinder functions (see
Bessel func-tions) |
|
parametric, 143, 149, 150, 199,
215 representmg spécial types of data, 528 |
Fundamental theorem, of algebra,
92 of intégral calculus, 172, 457 |
absolute convergence of, 16, 17,
20 conditional convergence of, 16, 17 définition of, 4 expansion m, 35-46,
155-158 of constants, 6-22 of functions, 23-62 of power functions, 30 of
trigonométrie functions, 63-82 operations on, 21, 29, 33-35 sum of, 4n. |
|
of déterminants, 110 of sériés,
21 of vectors, 399 Multiplicity of root, 93, 294 Multiplier, Lagrangian, 165
Multiply connected région, 205, 212, 455 |
|
Seepage flow, 483 Séparation of
variables, 257 Sequences, 2 |
|
|
|
in intégrais, 183-188
Charactcristic équation, 292 Charge, distribution of, 487 Charts,
distribution, 506 Chemical reaction, 258 Circular functions, 247 Circulation,
of a liquid, 475, 477 of a vector, 418, 419 Closed curve, area of, 199-201
direction around, 200 intégral around, 201, 203, 206, 216, 421 simple, 200 en
u, 51 |
|
of senes, 29, 33, 34, 80
partial, 123-171 term by term, 33, 34, 80 under intégral sign, 167 Diffusion,
369, 427 Diffusivity, 368n. |
|
|
|
Legendre polynomials, 344, 384
expansion in, 346 Legendre’s équation, 342, 384 Leibnitz’s rule (see
Différentiation, under intégral sign) |
|
Laplace’s, 369, 382, 385, 386,
439 |
|
Tangent line, 143, 147, 151
Tangent plane, 146-149 tanh, 249 |
(See also Simple harmonie
motion) |
Arapere’s
formula, 52ra. |
|
Cylmdrical coordinates, 152,
185, 190, 191, 378, 386, 434, 438 |
|
simultaneous, 102-122, 139-141
solution of, 83-122 Systems of, 102-122 |
G |
tests for convergence of, 9, 11,
12, 15, 20, 27, 31, 33 |
|
Mutually exclusive events, 497 N |
|
fundam entai principle of, 6
limit of, 3 |
|
|
|
Coefficients, Fourier, 65
metric, 437 Cofactor, 111, 112 Combinatory analysis, fundamental principle
of, 493 |
|
Direction angles, 146, 398
Direction components, 146 Direction cosines, 146, 147, 151, 188, 194, 398 |
|
|
|
Leibnitz’s test (see Test, for
altemat-mg sériés) |
|
linear, 357 |
|
Taylor’s formula, 35-46, 158
applications of, 41-46 Taylor’B sériés, 37, 464, 539 for functions of two
variables, 155-158, 228 |
Viscous damping, 302, 366
Volume, as a triple intégral, 180 clement of, 185, 187, 190, 437 Volume
intégral, 180, 415 |
Amplitude
of coniplex number, 441 Amplitude function, 51 Analysis, harmonie, 545
Analytic functions, 451-491 Angle, as a line intégral, 195 direction, 146,
398 of lap, 240 of twist, 485 solid, 195 |
|
D |
Direction ratios, 150, 151
Directional denvative, 143, 151, 219 (See also Gradient) |
honïogeneous lmear, 119-122
non-homogeneous linear, 113-119 |
Gamma functions, 272-277
Gauss-Argand diagram, 440 Gaussian law of error, 520, 536 Gauss’s theorem,
193 General solution of differential équation, 230, 290, 292, 350, 358
Geomctnc sériés, 9 Gradient, V, 144, 152, 407, 410, 438 Graphical method, of
curve fitting, 525 |
theorems on, 17, 21, 27, 28, 29,
31, 33, 34, 36, 38 |
|
N*bla, or del, V, 194, 195, 407,
414, 422 |
|
Sériés, asymptotic, 524
binomial, 40 |
Taylor’s theorem, 36 Tension,
239, 243, 244, 251, 362, 377 Test, Cauchy’s intégral, 12 comparison, 9 for
alternating sériés, 15 for sériés, 9, 11, 12, 15, 20, 27, 31, 33 |
|
|
Commutative law, 394, 399, 400
Comparison test for senes, 9 Complementary function, 290, 292 Complété
elliptic intégrais, 48 Compiex number, 440 absolute value of, 441 argument
of, 441 conjugate of, 444, 488 vector représentation of, 440 Compiex roots of
unity, 87 |
|
|
|
|
|
Length, of arc, 143 of ellipse,
47 of sine curve, 55 Level surface, 406 Limit, 2, 124, 454 Line, contour, 144
coordinate, 434 |
|
of elastic membrane, 377 of
electric circuits, 386 of heat conduction, 367, 425 of vibratmg string, 361
Partial difîerentials, 128-143 Partial différentiation, 123-171 Partial
fractions, method of, 297 Partial sum, 4 |
|
|
W |
Angular
veloeity, 61, 191, 236, 404, |
Compiex variable, 440-491
functions of, 444-491 analytic, 451-491 dérivative of, 449 intégration of,
453 line intégral of, 454 Taylor’s expansion for, 464 Components of force,
217 Composite function, 134, 137 Condenser, 283, 299, 305, 308, 387
Conditionally convergent sériés, 16, 17, 21 |
Dam, gravity, 483 Dampmg,
viscous, 30ü Dead-beat motion, 304 Décomposition of vectors, 396 Definite
intégrais, 172 |
Dirichlet conditions, 65
Disoharge of condenser, 299 Discontinuity, fimte, 64 Discriminant of cubic,
89 Distance, élément of, 435 Distribution of charge, 487 Distribution charts,
506 Distribution turve, 504, 516 Distributive law, 399, 400 Divergence, of senes,
5, 8, 20 / of a vector, 411, 423, 438 Divergence theorem, 191, 415, 425, 428
dn u, 51 |
Error, Gaussian law of, 520, 536
mean, 516 mean absolute, 522 mean square, 522 of observation, 516 probable,
521 small, 56 |
of solution of équations, 83
Gravitational constant, 232 Gravitational law (see Attraction) Gravitational
potential, 219, 408 Gravity, center of, 177, 182, 183, 187, 190, 191, 196,
522 Gravity dam, 483 |
umform convergence of, 23-30, 33
Inflection, point of, 159 Initial conditions, 235, 351 Intégral calculus,
fundamental theorem of, 172, 457 Intégral curve, 226, 228, 279 |
|
Newtonian potential, 196
Newton’s law, of attraction, 218 of cooling, 254 of dynamics, first law, 231
second law, 231, 272, 363 third law, 231, 234 of gravitation, 232 Newton’s
method of solution, 97 |
|
évaluation of intégrais by,
43—46 Fourier, 63-82 infinité, 1-62 |
ratio, 11, 20, 31 Weierstrass M,
27 Theory of lcast squares, 521 Thermodynamies, 222 Torque, 405 |
|
|
|
|
|
|
|
Intégral équation, 347 Intégral
formula, Cauchy’s, 461 Intégral test for sériés, 12 Intégral theorem,
Cauchy’s, 455 Intégrais, around closed curve, 201, 203, 206, 216, 421 change
of variable in, 183-188 defimte, 172 |
direction cosines of, 146, 147,
151 normal, 144, 146-149 of equal potential, 277 of flow, 475 stream, 277,
432, 467 tangent, 143, 147, 151 vector équation of, 395 Line intégrais,
197-224, 410, 421, 454 |
Normal, to a curve, 144 to a
plane, 146, 147 to a surface, 147, 188, 407 Normal approximation, 515 Normal
denvative, 144, 146, 152 (See also Gradient) |
Particular intégral, 290, 292,
297, 318, 359 |
|
|
Walhs’s formula, 45 Wave
équation, 432 Wcdge, 473 Weierstrass test, 27 Work, 217, 404 Wronskian, 317 |
424 |
Conditions, Cauchy-Riemann, 221,
450, 455 Dirichlet, 65 |
change of variable in, 183-188
évaluation of, 172 mean-value theorem for, 210n. Deflection, 299 |
Dot product, 399 |
Error function, 516 |
Green’s theorem, for the plane,
202 in space, 191, 418 symmetric form of, 194, 418 |
|
Line intégrais, applications of,
217-224 |
|
|
intégration and différentiation
of, 29, 33, 34 |
Total dérivatives, 130-143 Total
differential, 127-143 Trajectories, orthogonal, 277-279 Transformation, by
analytic fonctions, 467 |
|
|
|
|
|
Euler équation, 322 Euler
formulas, 78, 251 Euler’s équations, 430 Euler’s theorem, 136 Evaluation of
intégrais, by différentiation, 169 m sériés, 43-46 Even function, 68 Events,
dépendent, 495 indépendant, 495 mutually exclusive, 497 Exact difïerential,
211, 212, 216, 222, 224,262,411,418,420 Exact difïerential équation, 262
Expansion, m Bessel functions, 339 m Fourier sériés, 65-82 m Legendre
polynomials, 346 in Maclaurm’s sériés, 37 in power sériés, 37-46 in Taylor’s
sériés, 37 m trigonométrie sériés, 65 uniqueness of, 38 Expectation, 500 |
|
double, 173, 192, 202, 275
elliptic, 47-55, 238 évaluation of, by means of sériés, 43-46 |
|
Normal distribution curve, 516
Normal équations, 537, 540 Normal form, 146 |
Particular solution, 230 Path,
intégrais independent of, 208, 216, 452, 455 |
Sériés, of constants, 6-22 of
functions, 23-62 power, 30-62 |
|
Z |
Applications,
of conformai représentation, 479-491 of lme intégrais, 217-224 of scalar and
vector produets, 404-406 |
for exact differential, 212, 216
Conductivity, 367, 426 Conductor, 486, 489 Conformai mappmg, 465, 471
Conformai représentation, applications of, 479-491 Conformai transformation,
467 Conjugate of a compiex number, 444, 488 |
Degree of differential équation,
225 Del, V (see Nabla) |
Double intégrais, 173, 192, 202,
275 Drying of porous solids, 369 Dynamics, laws of, 231 |
|
H |
|
around a closed curve, 202, 206,
216, 421 |
|
|
|
conformai, 467 Green’s, 191,
202, 418 of element of arc, 467 of intégrais, 202 Schwartz, 478, 485, 491
Stokes’s, 421 Trapézoïdal rule, 556 Trials, rcpeated and independent, 501 |
|
|
|
|
|
Expected number of successes,
508 Exponential form for trigonométrie functions, 78, 251, 446, 447
Exponential function, expansion for, 42, 446 |
|
iterated, 175, 180 line,
197-224, 410, 421, 454, 458 mean-value theorem for, 210n. multiple, 172-196
particular, 290, 292, 297, 318 surface, 188-196, 415, 421 transformation of
(see Green’s theorem; Stokes’s theorem) triple, 177, 193 volume, 180, 415 witli
a parameter, 47, 167 Integrating factor, 265 Intégration, by parts, 276
numerieal, 554—560 of complex functions, 453 of sériés, 29, 33, 34, 80 term
by term, 33, 34, 80 Interpolation, method of, 101 Interpolation formulas,
550-554 Interval, 4 |
|
Normal law (see Gaussian law of
error) |
Pendulum, simple, 44, 234-238,
306 Periodic function, 64 Picard’s method, 347 Plane, équation of, 147
mclined, 280, 282, 306 normal form for, 146 tangent, 146-149 Point, of
inflection, 159 smgular, 451 Poisson formula, 512 Polar coordinates, 183,184,
276, 279, 386, 438 |
solution of differential
équations by, 228, 325-346 |
|
Zéro vector, 393 |
Approxnnate
formula, for n\, 509 for probability of most probable number, 511 |
Conjugate functions, 468, 470
Conservation of matter, law of, 429 Conservative ficld of force, 219, 411
Consistent Systems of équations, 117-122 |
Delta amplitude, dn, 51 De
Moivre’s theorem, 90, 442 |
E |
|
Harmonie analysis, 545 Harmonie
sériés, 8 Heat conduction, 367 Heat flow, 368-377 équation of, 368, 425
steady, 256, 368, 427 variable, 368, 373, 425 Hélix, 151, 152 Holomorphic
functions, 451 |
|
définition of, 197, 454
évaluation of, 202-206, 458 for angle, 195 for area, 201 for work, 217 in
space, 215, 410, 421 properties of, 206-217 transformation of, 202, 421
Linear dependence or independence, 116, 317 |
|
|
|
Trigonométrie functions, 78,
251, 446, 447 |
|
|
|
Dependence, functional, 2
linear, 116 |
|
Extremal values, 164 Extremum,
164 |
|
of convergence, 31, 33 of
expansion, 38, 76 Inverse hyperbolic functions, 249, 255 |
|
Normal line, 144, 146-149 Normal
orthogonal functions, 81 Numbers, complex, 440 measure, 397 |
Polygon, rectilinear, 478, 485
Polynomials, Legendre, 344, 384 Porous solids, drying of, 369 Potential,
elcctrostatic, 487 gravitational, 219, 408 lines of equal, 277 Newtonian, 196 |
Taylor’s and Maclaurin’s, 37,
155, 228, 249, 464, 539 tests for convergence of, 9, 11, 12, 15, 20, 27, 31,
33 |
|
Zonal harmonies (see Legendre
poly-nomials) |
in
applied mathematics, 55 Approximation, Laplace’s or normal, |
Continuity, équations of, 221,
429, 481 |
|
e, 42 e**, 250 |
|
|
|
Linear differential équations,
288-349, 357 |
|
|
|
Trigonométrie sériés, 63-82
Triple intégrais, 177, 193 |
|
|
|
Dépendent events, 495 Dérivation
of differential équations, 231-247 Dérivative, 125 directional, 143, 151, 219
normal, 144, 146, 152 of functions of a complex variable, 449, 452, 463 |
|
F |
|
Inversions, 106 |
|
Numerical intégration, 554-560
Numerical solution of différentiel équations, 346 |
velocity, 221, 222, 277, 430,
432, 453, 467, 480 |
theorems on, 17, 21, 27, 28, 29,
31, 33, 34, 36, 38 |
|
|
515 |
of functions, 23, 28, 124, 448
Contour lino, 144 |
|
Effects, superposition of, 129,
223 E{k, <p), 48-51, 54 Elastic curve, 240, 307 Elasticity, 241, 422,
484-486 Electrodynamies, 422, 423n. Electron, 315 |
|
|
|
with constant coefficients, 287
357 with variable coefficients, 284, 315-349 |
|
Potential function, 219, 411
Power sériés, 30-62 différentiation of, 33, 34 évaluation of intégrais by,
43-46 expansion in, 35-46 fonctions defined by, 33 intégration of, 33, 34
interval of convergence of, 31, 33 operations on, 33-35 theorems on, 31-35 umform
convergence of, 33 uniqueness of expansion in, 38 whose ternis are infinité
sériés, 40 Power séries solutions of differential équations, 325-346
Précision constant, 520, 521 Pressure on dam, 484 Primitive, 458 |
|
U |
|
|
|
of hyperbolic functions, 255 of
senes, 29, 33 partial, 125-143, 153 total, 130-143 Descartes’s rule of signs,
94 Déterminants, 102-114 cofactors of, 111 expansion of, 106n., 111
functional or Jacobian, 183 Laplace development of, 111 minors of, 110 of matrix,
115 product of, 110 properties of, 107-112 solution of équations by, 102-114
Wronskian, 317 Déviation, standard, 523 Diagonal term of déterminant, 107
Diagram, pv, 223 Différences, 527 |
|
F(k, </>), 48-55 Factor,
integrating, 265 Factor theorem, 92 Facto rial, n !, approximation for, 509
(See also Gamma functions) Falling body, 58, 232 Field, 406 |
|
Irrotational field, 418, 423,
430 Isolation of roots, 92 Isothermal process, 224 Iterated intégrais, 175,
180 Itération, method of, 297 |
|
O |
|
uniform convergence of, 23-30
Shearing stresses, 485 Simple closed curve, 200 Simple harmonie motion, 233,
301, 314, 380 équation of, 234 penod of, 234 |
|
|
Approximations
to binomial law, 512 Arc length, 143 of ellipse, 47 |
Convergence, absolute, 16, 17,
20, 21, 33 |
|
Electrostatie field, 475, 477,
479 Electrostatic force, 487 Electrostatie potential, 487 Electrostatics,
486-491 Elément, of arc, 467 of area, 184, 190, 437 of distance, 435 of
volume, 185, 187, 190, 437 Elcmentary functions, 315 expansion of, 35-46, 65-82,
465 Ellipse, area of, 177, 202 center of gravity of, 177 length of arc of, 47
Ellipsoidal coordinates, 433 Elliptic functions, 51 |
|
|
|
Lmear differential operator,
287-299 Log z, 446 |
|
Principal part of incrément, 128
Probability, 492-524 Probability curvo, 521 Probable error, 521 Probable
value, most, 505 probability of, 511 Product, of déterminants, 110 scalar,
399 vector, 400 |
|
Undetermined coefficients, 229
Uniform convergence, 23-30 test for, 27 |
|
Arc
length, of sinusoid, 55 Area, 172 |
|
Differential, exact, 211, 212,
216, 222, 224, 262, 411, 418, 420 of area, 184, 190 of volume, 185, 187, 190
partial, 128-143 total, 127-143 |
|
conservative, 411 electrostatic,
475, 477, 479 irrotational, 418 Finite discontinuity, 64 Fittmg, curve,
525-560 Flexure, 298 |
|
J |
|
Odd function, 68 Operator, 528 |
|
Simple pendulum, 44, 234-238,
306 Simply connected région, 205 Simpson’s rule, 556 Simultaneous
differential équations, 312-315 |
|
|
|
conditional, 16, 17, 21 interval
of, 31, 33 of sériés, 4, 7 |
|
|
|
|
|
Logarithmic paper, 526 M |
|
Projection, Mercator’s, 479
stereographic, 479 Pulloy, slipping of belt on, 239 pv diagram, 223 |
|
Unit vectors, 394, 397 Unity,
roots of, 87 |
|
as a
double intégral, 178 as a lme intégral, 199-202 element of, 183, 184, 190,
437 positive and négative, 200 surface, 188-196 |
|
Differential équations, 225-391
Bernoulli’s, 286 Bessel’s, 332, 380 Cauchy-Riemann, 221, 450, 455 Cauchy’s,
322n. définition of, 225 degree of, 225 dérivation of, 231-247 Euler’s, 322,
430 exact, 262 first order, 256, 267 Fourier, 425 |
|
Flow, of a liquid, 220, 424,
428, 477, |
|
Jn(x), 336 |
|
différentiel, 287-299, 357, 406
vector (see Curl; Divergence; Gradient; Nabla) |
|
Simultaneous équations, 102-122,
139-141 sin x, 41, 250 siir ' x, 46 |
|
|
|
tests for, 9, 11, 12, 15, 20,
27, 31, 33 |
|
|
|
|
|
M test, 27 |
|
Q |
|
V |
|
Argument
of complex number, 441 Associative law, for sériés, 18 for vectors, 394 |
|
|
|
, 478,480-484 |
|
Jacobian, 141, 183, 190 |
|
Order of differential équation,
225 Ordinary differential équations, 225— • ' 349 |
|
Sine, hyperbolic, 247 length of
curve, 55 power sériés for, 40, 41 Sme senes, 73 Singular point, 451 Smgular
solution, 279 Singulanties of funetion, 222 sinh x, 247 |
|
|
|
radius of, 31, 33 umform, 23-30,
33 Cooling, law of, 254 Coordinate lines, 434 Coordinate surfaces, 434
Coordinates, curvilinear, 433-439 cylindrical, 152,185,190, 191, 378, 386,
434, 438 |
|
|
|
|
|
Maclaurin formula, 36
Maclaurin’s sériés, 37, 249 Magnitude of a vector, 393 Map, géographie, 479
of a curve, 466 Mapping functions, 467 Matrix, 114-122 augmented, 118
déterminants of, 115 rank of, 115 |
|
Quadrature, meehanical, 554
Quotient, of complex numbers, 444 of power sériés, 40 |
|
Variable, change of, 154,
183-188 complex, 440-491 dépendent, 2 independent, 1 |
|
Asymptotic
formula for ■«', 509 Asymptotic séries, 524 Atmosphère, thickness of,
61 Attraction, law of, 218, 232 motion under, 58, 218 of cône, 196 of
eyhnder, 196 of sphere, 196, 232 Augmented matrix, 118 Auxiliary équation,
292 Averages, method of, 534 Axes, right- or left-handed, 397 |
|
|
|
|
|
|
|
(See also Differential
équations) Ordinary discontinuity, 64 Origin of a vector, 393 Orthogonal
curves, 277, 468 Orthogonal functions, 81, 339, 345 Orthogonal Systems, 434
^Orthogonal trajectories, 277-279 Orthogonal vectors, 398 Oscillation of a
spring, 299 Oscillatory motion, 304 Overdamped, 303 |
|
Sink (see Source and sink)
Six-ordmate scheme, 548 Slipping of belt on pulley, 239 Small numbers, law
of, 512 sn u, 51 |
|
|
|
|
|
|
|
|
|
Maxima and minima, constramed,
163 |
|
R |
|
Variable heat flow, 368, 373,
425 Variation, of constants (see Variation, of parameters) |
|
B |
|
|
|
|
|
|
|
P |
|
Solenoidal field, 423 Solid
angle, 195 Solids, drying of porous, 369 Solution, of cubic, 86-91 |
|
|
|
|
|
|
|
|
|
for functions of one variable,
158 for functions of several variables, 160 |
|
Radius of convergence, 31, 33
Radius vector, 195 Rank of matrix, 115 Ratio test, 11, 20, 31 Reaction,
Chemical, 258 Rearrangement of sériés, 17 Rectilinear polygon, 478, 485
Recursion formula, 273, 328, 3 |
|
|
|
Base
vectors, 396 Beam, 240-242, 307 Belt on pulley, slippmg of, 239 Bendmg
moment, 241 Bernoulli-Euler law, 241, 307 Bernoulli’s équation, 286 Bessel
functions, 273, 336, 381 expansion in, 339 Bessel’s équation, 332, 380 Beta
function, 276 Binomial law, 502 |
|
|
|
|
|
|
|
p sériés, 10 Parabole, 244
Parabolic coordinates, 439 Paraboloid, hyperbolic, 162 Parachute, 253, 255 |
|
of differential équations, 226,
228, 325 |
|
|
|
|
|
|
|
|
|
Mean error, 516, 522 Mean-value
theorems, 210n. |
|
|
|
|
|
approximations
to, 512 Binomial sériés, 40 Biot and Savart, law of, 52 Boundary conditions,
242, 351, 363, 370 |
|
|
|
|
|
|
|
|
|
general, 230, 290, 292, 350, 358
particular, 230 |
|
|
|
|
|
|
|
|
|
Measure numbers, 397 Mechanical
quadrature, 554 Membrane, vibration of, 377 Mercator’s projection, 479 Metric
coefficients, 437 |
|
|
|
|
|
Buckling,
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|